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ABSTRACT
“u’This paper deals with the numerical solution of boundary value problems

of ordinary differential equations posed on infinite intervals. The solution

of these problems proceeds in two steps. The first is to cut the infinite
.* interval at a finite, large enough point and to insert additional, so called
asymptotic boundary conditions at the far (right) end; the second is to solve
the resulting two point boundary value problem by a numerical method, for
example a difference scheme. In this paper the Box-scheme is investigated.

Numerical problems arise, because standard algorithms use too many grid points

as the length of the interval increases. An ‘'asymptotic' a priori mesh size
sequence which increases exponentially, and which therefore only employs a
reasonable number of meshpoints, is developed;* ;hve§tigating the
conditioning of the (linearized) Box-scheme;we find that the solutions can be
obtained safely by the Newton procedure when partial pivoting is employed. =~
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SIGNIFICANCE AND EXPLANATION

This paper deals with the numerical solution of boundary value problems
of ordinary differential equations posed on infinite intervals. These
problems have the following form. We look for the solution of a system of
ordinary differential equations which is defined on the interval [1,=«] ,
which fulfills a certain continuity requirement at infinity and some boundary
conditions at t = 1.

Such problems occur in laminar flow theory, in fluid dynamical stability
theory, and in quantum mechanics.

For the numerical solution we proceed as follows. First we cut the
infinite interval at a finite, large number t = T and impose additional, so
called asymptotic boundary conditions at t = T in order to obtain a 'finite'
two point boundary value problem. Then we solve this problem with a finite
difference method. The difficulty arising frequently is that the number of
mesh points has to increase rapidly as T + «» in order to preserve a certain
accuracy when standard algorithms are used.

In this paper we derive a sequence of mesh-sizes which increases

exponentially. The amount of computing necessary is kept reasonably low.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




THE NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS ON 'LONG' INTERVALS
Peter A. Markowich' and christian a. Ringhofer'*
1. Introduction.
In this paper the numerical solution of boundary value problems on infinite intervals

of the form

(1.1) y' = t%(t,y), 1<t<o, - a»0

(1.2) b{y(1)) =0

(1.3) y € C{{1,w]) :<==> y @ C([1,»)) and lim y(t) = y(w) exists
tro

is considered. Here f:l!'w1 > nn, b:xn + Rk where generally k < n holds because (1.3)

furnishes another set of boundary conditions. f fulfills certain continuity properties at
infinity which will be defined later. We assume that the Jacobian ?—; (®,y(»)) has no
eigenvalue on the imaginary axis.

For a > =1 Equation (1.1) has a singularity of the second kind of rank

a+ 1 at t = o, But we disregard the practically unimportant case -1 < aq < 0 for the
following.

Problems of this kind often occur in fluid dynamics (boundary layer theory), quantum-
mechanics and electronics. For applications see Markowich (1980a,b), de Hoog and Weiss
(1980a), McLeod (1969) and Schneider (1979).

For the numerical solution we proceed as follows. First the infinite interval is
substituted by a finite but large interval and n-k additional, so called asymptotic
boundary conditions which reflect the asymptotic behaviour of the solution y , are imposed

at the right (far) endpoint T . We obtain two point boundary value problems of the form

(1.4) x' = t%(t,x), 1< t<T
(1.5) b(x(1)) = 0
(1.6) S(TIX(T} = y(T).

,Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and

the Austrian Ministry for Science and Research. This material is based upon

work supported by the National Science Foundation under Grant No. MCS-7927062.
Supported by a Research Grant from the Austrian Forschungsfoérderungsfond.




The condition (1.6) has to be chosen such that

(1.7) Iy - xI[1'T] + 0 as T + »

holds and its construction is described in de Hoog and Weiss (1980b), Lentini and Xeller

(1980) and Markowich (1980b). ,
The two point boundary value problem (1.4), (1.5), (1.6) now has to be solved by an

appropriate numerical method, for example by the Box-scheme which has the form

x -x
i+l i_.a 1 - -

(1.8) hj, t. 1/2f(ti+ 1/2. /2 (x1+1 + xl)), 1 = 0(1)(N-1)
(1.9) b(x,) = 0
(1.10) S(T)x_ = y(T)

n h

i

where tg = 1 <ty < eo0 <ty , <ty =T, ty 4=t +h , t,, yb- ty 4+ 7 holds.

It is clear that the mesh-size selection is, especially for these problems, very
important since the amount of labor will be very large for long intervals and bad (too

small) mesh-size choices. Even well working adaptive codes, which agsume a relation of the

form
t1.11) max h, /min h, < const
i i
i i
and whose convergence estimates are formulated in terms of max hi B would emmploy too

i
many meshpoints in order to admit a given bound for the global error. Moreover the codes

which employ adaptive mesh refinement (see Lentini and Pereyra (1977)) solve first with a
coarse grid in order to do local error estimation. However if T is large even a coarse

grid implies a lot of computational labor and is therefore not suitable.

In this paper we use the asymptotic form of the solution of (t.1), (1.2), (1.3) in
order to construct an asymptotic a priori mesh. The term asymptotic has to be understood
in the following sense. 1In an interval (1,y] , where Yy solely depends on the
'infinite' problem either constant meshsizes or more sophisticated algorithms like
equidistributing meshes (see Lentini and Pereyra (1977)) have to be used and in [y,T] the

agsymptotic mesh is employed.
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It turns out that meshsizes which increase exponentially can be used since our

assumptions guarantee that y(t) + y(=) exponentially. For the Box-scheme it will be shown
f that the number of grid points which is necessary in order to achieve a total accuracy
0(e) (total accuracy refers to the difference between the 'infinite' solution y(t;) and
the discrete approximation xi) equals ole y& ) + Por this a suitable T = T(g) has been
taken. Moreover it will be shown that the Newton procedure for (1.8), (1.9), (1.10) with
these exponentially increasing stepsizes converges quadratically from a domain of starting
values which does not shrink to ¢ as € + 0 . We also show that the condition number of

-1
the {(linear) Box-scheme is an 0(e /5

) 8o that the linear system can be safely solved by
partial pivoting. Therefore, in the nonlinear case, the Newton procedure can be safely
applied.

Of course, no fuily impliciv difference scheme (like the implicit Euler scheme) should
be used for the integration of (1.4), (1.5), (1.6) since in general the fundamental matrix

! of the linearized problem (1.4) contains exponentially increasing columns which are scaled

down by the boundary condition (1.6). But nevertheless this would cause instabilities

during the integration when using large meshsizes. Similar instabilities can occur in the
case qa > 0 when using the trapezoidal rule.
Higher order stable methods can be constructed by polynomial collocation at Gaussian
points and will be analyzed in a subsequent paper.
Another way to solve problems of the kind (1.1), (1.2), (1.3) is to transform the
'infinite' problem by a transformation ¢t = s-B, B> 0 to the interval [0,1] and to L
ﬂ

employ difference methods at this constant interval. Methods of this kind have been

investigated by de Hoog and Weiss (1979). However this way of proceeding has the

disadvantage that a singular problem (the right hand aide of the equation is not defined
in s = 0) has to be solved and therefore the obtained convergence estimates are not very
strong. Another disadvantage is that many physical problems are actually pcsed on an
infinite interval (for example in boundary layer theory) such that a 'direct' solution is

desirable.
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We remark that there is a close connection to singular perturbation problems since the

transformation s = %E% s E™ ;%T takes (1.4), (1.5), (1.6) into
(1.12) ez () = (.+e)°:(5§5 ,2(8)), 0<8<1, a»0
(1.13) b(2(0)) = 0

t1.14) s(% + 1)z(1) = 0.

(Note that lim £(Z£ ,z) = £(=,2)).
e+0
The already developed mesh-size sequencés for singular perturbation problems cannot be
applied since the linearization of the right hand side of (1.12) does not generally have a
series expansion in powers of ¢ uniformly in 0 < 8 < 1. (see Ringhofer (1981)) since
for most practical problems
o

(1.15) %é(t,y) -1 A et t >
1=0

holds.

Recently Ascher and Weiss (1981) came up with a meshsize sequence for linear constant
coefficient singular perturbation problems (¢ = 0) which is (as a formula) equivalent to
ours, however they apply it in the layer of thickness O(e) which corresponds to the
interval [1,y] in our long interval case. Outside the layer they use a uniform
(independent of ¢) mesh fine enoujh to approximate the solution of the reduced problem

(e = 0) well. The difference comes from the fact that the solution of the singular
perturbation problem decays exponentially to the solution of the reduced problem within the
layer while in the infinite interval case exponential convergence holds, for s + 1.

Kreiss (1975) used a similar approach to construct meshes for singular perturbation
problems.

This paper is organized as follows. Chapter 2 gives a short summary of the theory of
boundary value problems on infinite intervals and their 'finite' approximation, in Chapter
3 stepsize sequences are developed for scalar initial value problems, Chapters 4,5 dQeal
with linear boundary value problems and in Chapter € nonlinear prohlems are dealt with. In

Chapter 7 the results are gathered and put into algorithmic form.

-4~
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2. Boundary Value Problems on Infinite Intervals and their Approximation by ‘finite’

Interval Problems - A Summary

We consider boundary value problems on infinite intervals of the following form

(2.1) v' = tt)y + tP(t), 1 <tcm, a>0
(2.2) By(1) = B
(2.3) y € C([1,=])

where the nxn-matrix A € C({1,«]) and f @ C([1,«]). B is a matrix whose rank is (in
general) less than n since (2.3) furnishes another set of boundary conditions.

Let us first consider the cage where A(t) = A . A shall have the Jordan form J
obtained by
(2.4) A=e3E'.

We assume that J has the block form

+
J }r+

(2.5) J =
J Y

where the r+ x r+matrix 3* has only eigenvalues with positive real parts and the
r_xr - matrix J° has only eigenvalues with negative real parts. Imaginary eigenvalues
will be excluded for the following. The diagonal projection D,, D_ are defined by

(2.6) D, = ’

(2.7) D = .

The general solution of (2.1) (with A(t) = A) and (2.3) can now be written as

b o
(2.8) v(t) = E¢(t) g £+ EMHE '£)(t), EecC"




where

J ot
(2.9) ¢le) = exp(;:; t )

is the fundamental matrix of the transformed problem
(2.10) wt = %+ % e
where Eu = y holds and (HE"f)(t) is a suitable particular solution of (2.10) which can
be taken as
t -1 a t -1 a

(2.11) (Hg)(t) = ¢(t) [ D .4 '(s)s’g(s)ds + ¢(t) / D_¢ (s)s g(s)ds

® Y
for some Yy > 1. This operator has been analyzed by de Hoog and Weiss (1980a,b) and
Markowich (1980a).

H has the following properties

(2.12)(a) H:C([y,»]) + C([y,=])
(2.12)(b) )4 <c
[y,
where IOI[Y ] denotes the max-norm on [y,»] resp. the associated operator-norm. The
’

congtant ¢ is independent of Y .
Markowich (1980a) has shown that if

- SR THE o
(2.13) £(t) = F(t)exn(- —= t~ ), FeL ([1,%)n c((1,=))

holds with u > kmin >0 where xmin is the smallest modulus of the real parts of the

eigenvalues of A which are in the left half plane, then

saemper [ 0 rc
r

ty(t)r < const.(lFI[1’m]
(2.14)

(r=1)(at1)

< const.{\F} + 1EDt )

A
min _at+1
xp( per c

[1,]
holds. r is the largest dimension of a Jordan block associated with an eigenvalue of A

with real part —Amin .
The boundary value problem (2.1), (2.2), (2.3) with A(t) = A is uniquely soluble for
all ge nr', £ecC([1,=]) if and only if the r _x r _ matrix
{2.15) 350(1)[F0 ] is nonsingular.
Here B 1is assumed tor;e a r_ x n-matrix. So the continuity recquirement (2.3)

furnishes r, linearly independent boundary conditions.

(2.15) implies that NEN < const. gl holds.




——— e .

e it - . e ettt -l .

The variable coefficient case A(t) # A 1is treated by a perturbation approach (see de

Hoog and Weiss (1980a,b) and Markowich (1980a,b)). A(w) now plays the role of A . We
asgume that A(=) has the Jordan form J given by (2.5). Then we can show (see de Hoog

and Weiss (1980a,b)) that

by
(2.16) y(£) = Ey_(£)E + EWE '£)(t), EecC
where ¢ (t) is an n x r_-matrix defined by
(2.17) v.() = (@ - mE e - e[ 2 ] e ety e
Y

for y sufficiently large. For t e [1,y] y {t) can be continuously extended, zw(z"f)
is a suitable particular solution of (2.1) . The boundary value problem (2.1), (2.2),

4
(2.3) is uniquely soluble for every B @R , £ € C([1,»]) 4if and only if the

r_ x r_-matrix

(2.18) BEy_(1) is nonsingular.
Markowich (1980a) has proven the estimate
(A . -6)
min at1
(2.19) Iy(t)1 < const ““[1,..1 + 18D exp(- —=1 ¢ )

for t >t . &> 0 can be chosen sufficiently small if £t is large.
Now we briefly consider nonlinear problems of the form (1.1), (1.2), (1.3).
From (1.1), (1.3) we conclude that
(2.20) f(o,y(w)) =0
has to hold. We assume that the roots y(w) of (2.20) are isolated and take one
*
particular root y (») for the following. Moreover f(t,y.(w)) shall fulfill (2.13).
Defining
- n+ 1 - *
C (tia) = {te,y) erR et >t , 1ty =y (@)1 < )
*
we agsume that f, fy e clip(c<(1'y (»))) for a sufficiently large x . We also assume
that the boundary value problems (1.1), (1.2),. (1.3) has an isolated solution, i.e. the
linearized problem is nonsingular.
*
Now let J be the Jordan form of fy(ﬂ,y (»)) obtained by
* -1
fy(w.v (@)) = EJE

and let J fulfill (2.5} such that D,, D_, are defined as in (2.6), (2.7). Then xmin

-7-




*
is defined for J as above and ¢(t), w_(t) are as in (2.9), (2.17) with fy(t,y (®))

substituted for A(t). Markowich (1980a) showed that
* () -§)
min
(2.21) ly(t) - y (»)1 < const.ly_(t)1 < const. exp(- — i t

The isolatedness of y now implies that

3b
3y

is nonsingular. More information on the analysis of these problems can be found in the

(2.22) (y(1))y_(1)
above cited references and in Lentini and Keller (1980).
We want to approximate the 'infinite' problems (2.1), (2.2), (2.3) by 'finite' two

point boundary value problems of the form

(2.23) x = t%(t)x + t%(t), 1<t <T, T> 1
(2.24) Bx(1) = B
(2.25) S(T)x(t) = Y(T) .

Since (2.24) is a boundary condition of rank r_ we assume the S(T) 1is a
r, x n-matrix. The question that arises immediately is how to construct an asymptotic
boundary condition S(T) such that
(2.26) 1y - xl[1'T] + 0 as T+ ®
and the order of convergence should be as fast as possible.

A complete theory of this kind can be found in de Hoog and Weiss (1980a) and Markowich
(1980b) and therefore we only give excerpts which will be needed in the sequel. The basic
idea is that the boundary condition (2.25) has to scale down all solution components of
(2.23), which do not decay exponentially.

We assume that (2.18) holds. A possible choice is
(2.27) s zsm =1, 0", y(m) =0 .

It has been shown in the aboze cited references that this boundary condition implies
convergence in the sense of (2.26) and that for general Y(T)
(2.28) ty - xl[1,T] < constisSy(T) - y(T)I

holds. 1In general the admigsibility conditions for a boundary condition S(T) are

(2.29) 1S(T) K < const., T + o




I

I,

(2.30) 1(s(TE ' < const., T e

then (2.28) holds for t:e unique solution x of the ‘'finite' problem if T is
sufficiently large. Y(T) = 0 is a natural choice for linear problems.

If £(t) fulfills (2.13) an estimate for the order of convergence is given by the
right hand side of (2.19). Moreover it has been shown that the choice (2.27) is optimal in
the sense that the actual order of convergence exceeds (2.19) for homogenous problems.

The condition (2.25) with S fulfilling (2.29), (2.30) and «y(T) = S(T)y'(w) can also
be used for nonlinear problems of the form (i.1), (1.2), (1.3) if the above stated

agssumptions on f(t,y) and the solution y hold. (2.28) still holds for nonlinear

problems.

-9-




3. The Scalar Case.

In this chapter we treat the simplest case, namely scalar initial value problems. The
aim is to construct step-size sequences for the Box-scheme such that the global error is
less than a prescribed accuracy regardless of the length of the interval of integration.
k These step-size sequences will be used for the general boundary value problem case.

We consider
{3.1) y' = =t + t%(0) , 1<t <m, a>0
(3.2) y(1) =y
where 1 = x1 + 1x2 may vary in a compact subset Q of {z € C|Rez > 0} .

3 The Box- or centered Euler scheme for (3.1), (3.2) has the form
Yie17¥Yy - - =

AL Q a
h 2 e U Yier P YD) Yt B, 1205 Y =Y

where for hi >0

(3.3)

h
i
(3.4) (a) ty 1, tiag =t * h ti 1/2 Lt 120 (b) £+ 1/2 £le,, 1/2)
holds.
We define
mo1- 5‘ h,tS s,
(3.5)(a) Y (Ah)y= 1 ——=222, ncm; Y =1, no>-1 |
n,m 2=n 1+ A h ta n+1,n
2 e Yy i
and for a sequence of complex numbers =z = (z )i-1
““ P 3+ Vy 3=1
1-1ht® 4 2, 4
+
(3.5)(b) (At hyz), = § 2B B (Ah), 1> 141
ARy L o1 1420 241,41
2 e Yy |
and (H_(X,tI,h)z)I = 0 where h = (hj);;; is the sequence of sgtep-sizes.

Using these definitions the solution of (3.4) can be written as

(3.6) vy = Yo (AT + E_( g mE),

where f = (f has been set. i

yi-1
5+ ' 3=0




The local discretization error t ¢, 2 i, of the difference scheme (3.3) is defined
i+ 1+ 4

as
yl(t Y=y(t,)
a i+1 i A,a a
ti+1/ 11+1/ ™ + 3 ti+ 1/(y(t1H) + Y(ti)) t1+‘/ fi# 1 i»0
2 2 i 2 2 2
where y is the solution of (3.1), (3.2).

(3.7)

The global error

(3.8) e; = yl(ty) -y
then satisfies the difference equation
e -e
i+ i A,a a
(3.9) h1 -3 t“,/z (°1+1 + °1’ ot 1/2 L 1/2. i>o0, e, =0

and therefore has the solution

(3.10) e, = (H_(At ,/mt),

i
i-1

ith = .

wit 2 (lj+ vgj‘o

In order to estimate the right hand side of (3.10) we need the following

lemma 3.1. let x'< for « = n,n+1,eee,m be complex numbers with RexK > 0 and

Ime i
Rex < x = const. Then setting h ai =0 for 1 51
K =i+t
m |x | m  J1-x_|
(3.11) ] ——= = ITxlT <V N14x?
K=n |1+XK| L=+ L
m Ix | k=1 |1-x_|
(3.12) ] —E5— 1 = K1
2 |14+x |
x=n l1+xK| £=n L

holds.

Proof: An easy calculation gives

Ix | 11-x_|
— Y (-

|14-x'<|2 '1-x-<'

Substitution into the right hand sides of (3.11), (3.12) yvields telescoping sums.

Application of Lemma 3.1 immediately yields

i-1

- i-1
Lemma 3.2. Let f = (fg+ DQ£=I « Then for every sequence h = (hl)"_‘I with hl >0

-11-




(3.13) taa_(nt ,mf), | < const.  max (e
E=I(1)(1-1)

holds for {1 > I wuniformly for L € Q .

Proof:
HH_(Oe ,mf) | <

-1

RYRY Ryt z+ ‘/2
< const max (€, ¢, 101 + == 1 )) Y (x/h)
Y, 2 22+/2 2 1,441
2=1(1)(1i-1) g=I |1+ /2hl z+ /|
and application of (3.11) yields (3.13).
We get from (3.10)
(3.14) l%|<mmb max [Iuvm+J¥hfLVH.
2=0(1)(i-1) 2
For the following we assume that
- _ ko ot
(3.15) f(t) F(t)exp( e t ) H? X1
holds where F,F',F" @ C([1,=}) n L_([1,=]).
A straightforward calculation gives
(3.186) 15,, Y, | < comst. hi[——l—— L |X||Y"l[t N ]].
to+ Y 2241 221
Markowich (1980a) shows that (3.14) implies
X1 ot

lyte)) € c ORI, o+ |yDexp(= =5 7 )

where c1(x) is bounded for A e ! « Differentiating (3.1) and using (3.16) yields

A
} < o, (¢ 2 it + lyl)tiuexp(- ;’—t“”) ' t, 2t (N

3.17
(3:17) 2 Lo {1, 75 22

w

A
where the function t3aexp(- ;&T ta+1) takes its maximum over (1,=] at t(1)(X).

cz(X) and t(1)(X) are bounded for X € Q . We get

2 =) op Ot 2
Ie | <cl § K l[1 - * lyl)(t(’) max hy +
k=0 ! =0(1)I
(3.18)
2 _2qa X1
+ max (h' .t “exp(- —= t (1 + h 2 1)) .
p=(re1) (1) (4-1) ©E ot AR
Here tl < t(1) < tI+1 holds, where t(1) = ?23 t(1)(x) and ¢ 1is independent of

Ae qg. (3.18) gives

-12=-

1
!
!
P W dal‘



i

2
(x) - sot1 2
le, I ¢ 2c( 20 P50, g+ IYDGE) max by s
= 2=0( 1)1
(3.19)
)\
2a 1 ot 2 .3 a,0ar3
+ max [tz exp(~ pre) tl )mAx(h!,hltl,h2 ¥ .

L=(I+1)(1)(1-1)

Now we require that for some 0 < ¢ € ¢

0
2
(k) =
(3.20) fe | < 4c[20 LA PRI R L
holds. Thig is fulfilled if we choose
e -
(3.21)(a) max h!. < -G._—1'- h(k1.£.t£), tl < t“)
t=0(1)I /t
(1)
and for £ > 1 3 :
b — ‘
= . -a 1 at1 ot 1, atl ;
ve tl exp(z(a+1) tt Ve t(1) <ty < ()‘1 2n e) t(2>(e) :
(3.21)(b) h, < AlA,et,) =( /e 7% (__5_1_.,:«”, t, (el &t, €t (g)
: % 1765y €ty PRt ' N2y PENASEY
_ -2¢a A
atd - ot 1 at+1
fet, Texnloitany ) 0t %t e
A
A mlar) 1 a1t
where t(a)(e) > t(z)(e) ig the root of 3/E t(3) exp(a(a+1) t(a)). (Note that
c(z)(e) = t(3)‘€) for aq = 0.)

This defines upper bounds for the stepsizes at a given point t depending on ¢ ,

2

the bound for the global error, and on A‘ = Re)l « These bounds are independent of the

length of the integration interval and increase (in t = tz) exponentially.

We now compute the number of steps N(T,&) which is necessary for integration on the

interval [1,T] 1{if h2 - E(Al,e,tz) is chosen. Therefore we write
{3.22) MT,e)= J 1+ [ 1+ ] 1+ 1 1
ier ier ier ier

(0) (1) (2) (3

(n) 1} where t(O) =ty =1 and t(4) =T has been

set. Obviously

where 1 = {ie lolt1 e(t(n),t(n#1)

(3.23) R
161(0) Ve i
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h h h t
+ +
| (3.74) ] 1= 2 2o (2t B ooy /_L
‘ 191(1) 181(1) i+1 i 191(1) i t(1) h(X,e,t) €
n M
where c(}) is bounded in @ since max ;+1 e 2 holds. The same estimate is
181(1) i
easily obtained for T 1.
ier
E (2)
L For t(J)(a) < ti < T we get
_ 2a N
f o+3 1 att at1
; . ?> —— - .
(3.25) hi+1 2 exp((a+3)(u+1) (2 1)t(3))hi
F ‘
' Since &) > &1 4 1 holds we derive
(3) X1 €
_2a _ 2%y 2 _1
at3 at3 ot3 3
(3.26) h1+1 > 2 € h1 > 2 € hi
and get a bound X = § 1 from
1814,
341
(3.27) T > ] n
i
i-j1

where 1(3) = {j1,-o-,j1 + K=1} has been set. Further we use

atlyatl 1,0l
hj1 >t y,(e) > ()‘1 17 am =2)
such that
-2a _1 2 1
(3.28) R 2 (2 e P () (D
3 e 1

-14~
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From (3.27), (3.28) we conclude

(3.29) R ETIVCRE
1813, €
Altogether this gives
(3.30) MT e <o+ 2T
/e -
€
A constant stepsize algorithm would need
- T
(3.31) Nconlt (T, €) 5 E_
min(/:. //—_
0

steps because

max|(H_(\,t ,h | <T

s t
+
1 i+1

1+ Yy

[k! a
const)z)il < const(1 + 2 hT )m:xll

holds where h (h) is a sequence of constant stepsizec,

L]
const i=0

Therefore the stepsize sequence h given by (3.21)(a),(b) is very efficient and the
reason for this is that no condition like hmux/hmin < const or even h1+1/h1 < const is
required. We remark that h equidistributes the lacal exror.

The problem (3.1), (3.2) can be regarded as a model for the decaying solution

components of boundary value problems on 'long' intervals and now we look at the increasing

components, which can be modelled by
(3.32) z' = wt% + %), 1¢t<T, ad>0
(3.33) zZ(T) = 2

where w = u,  + imz 8l and  is again a compact subgset of {z @ C|Rez > 0} . We again

1
uge the Box-scheme to approximate (3.32), (3.33)

z -2

i+1 i W, a a -
(3.34) hj 3 ti+1/2 (z“‘-rzi) + t1*1/2t‘1+1/2, i >0, zy =z
where
(3.35) to = 1< t1 = to+h0 & ese ¢ tN-1 = tN-2+hn-2 < tN = tN-1+hN-1 = T
holds.

-15=




The solution of (3.34) is given by

(3.36) z h)z + (H+((Ihthh)f)i

R AL

where
a
N-1h el ¢ £ 4
- - LW H -
(3.37) (B, (@t M6 1 ¥y gqlerh), 1 <=1

7} a
=i 1 +2h’-tl+1/2

and (H*(w,t“,h)f)N =0 .
Since the increasing components are scaled down by the asymptotic boundary conditions
at t = T we disregard the convergence of the z; to z(ti) but we prove a stability

estimate analogously to Lemma 3.2.

1

N~ N~-1
i+ ng_1 . Then for every sequence h (h )

«3e t =
Lemma 3.3 Le 4 (f ) gt

(3.38) 1 (H (w,t_,h)f), ] < const. max (g, q,0C1 + lol h,t2 4, )]
+ N i g=i(1)(N-1) L1+ 2 278+
holds for i < N uniformly for we Q .

Proof,
I(H+(m,tN,h)f)i| <

N-1 h t
lwl . ,a Lo V.
< max (g, ¢, [€1+=2n el 4 ) — |y {w,h) .
- . 2y 2 el L a2 i1
L=1(1}(N=1) =i |1+;’h£tl+ 1/21
application of Lemma 3.1, (3.12), yields:
lwl a
|(H+(m,tN,h)f)il < clw max lfl+1/2|(1 r 5 hltuvz).

L=i(1)(N=-1)

Finally we prove

Lemma 3.4. Assume that ti < tj < t(z)(e) and that h

Then |

<E()\1,c,tz) for A, > 0

2 1

(wh)l < expl-c(t, - £

¥y, 9-1 j

and ¢ = clw) is bounded on Q .

e eae——\ L LT




Cemmmg .-

Proof. Let z-z1+1z2, zy > 0 « Then

421 z,‘
<1- < oxp(-4 —

I1-z|2
|1+z|2 |1-|>z|2

14z

holds. This estimate has been used in de Hoog and Weiss (1979]. Therefore for

w-m1+1w

2
a
. 3=-1 ht) 1
Iy {w,h)] < exp(-2w i/ .
1431 Vemt 1480 e% 412
2t Yy

W a 2
Since |1 + 3 hl.th 1/2l €< c(w) for £, < tj < tz(e) holds we get

2w 3=-1

3-1
— a - -
“1,3-1(“’"‘” < exp(= = ”zi hoto, 1/2) < exp(-c 221 h,) < exp ( c(cj

~ ti)).




4. The Case A(t) = A.

We consider

' (4.1) x' = t%x+ tI(L), 1<t <T, a»0
(4.2) Bx(1) = B8
(4.3) S{TIX(T) = Yy(T)
r

(2.13) with > Amin s the r_ x n-matrix s(T) fulfills (2.29), (2.30).
case shall be considered as a model for problems where A depends on t .

The Box-scheme has the form

where the partition A = {to,t1

A fulfills (2.4). Now we employ the transformation

and Weiss (1980a) did for the continuous case we split uy into

-1 N
_ (E £,..4,) |}
(4.11) (a) u, = , (b) E'f 4 = i+
IR I
1+

and get employing (3.6) for u; resp (3.36) for uI

i41 " "4 _ A a a - -
(4.4) B -3 t1+1/2(x1+1 +x) + ti“/zfi“/z’ 1 = 0{1)(N-1)
; (4.5) on =g
(4.6) S(Tixy = ¥(T)

+

Yr_

{ where A fulfills (2.4), (2.5), B is an r_ x n-matrix, BER " and f fulfills

This simple

N-1
000, N-1'tN} fulfills (3.35) and h = (hi)i-o + hy > 0.

(4.7) x; = Buy
and get
u -u
i+1 i J ., a a -1
(4.8) hj_ =3 t1+ 1/2 (ui+1+ui) + t:|.+ 1/2E fi+ 1/2. i = 0(1)(N-1)
(4.9) BEuo = g
(4.10) S('x‘)!:u.N = y({T) .

We want to derive an existence and stability theorem for (4.8), (4.9), (4.10). As de Hoog




- eN= -1
(4.12) u E* + E_ + (H(J'coltu'h)x f)i

- - J
Y°’1_1(-J +hle

where for any k x k matrix P whose eigenvalues have positive real part

) 1(1 ma>n, Y (P,h) = I, n >~

(4.13)1" LR 1 LGS a+1,n

4 Bk Lo
2 Peter ) e Pty )
holds and the opcrntor H is defined as

+ +
(B (37, t.h2"), z-[2+ l

(4.14)(a) (H(J,t_,t ,h)e) =
N =Tk meT) z'
- i
and
N-1 T, + 1 a +
(4.14)(b) (1, " .tu,h)z Yy=- Eh"li - 1(.1 /h)(1+ 3 & r.+ ) ity
i-1 o«

- - - 3 o -1 a -
(6.%0)(c)  {RA_(-J,x M)z )y ,,Zlhlyl*"i"(-a T = Rt )t YE
. r r_ J
and =z ec has been set.

+ + -9 + -
where z = (:1+ 1/2)1-0 ’ 2 (zi* 1/ )1-0 i+ 1/28 c ’ zi.'. 1/2

Here (H,(I%,ty,h)z*)y = 0 and (H_(-37,t;,h)27); = 0 hold. These definitions make sense

because (I + rJ+)-1. (r - 1'-1-)_1 exist for 1 >0 .

In order to get bounds for the defined difference operators we use the following well
known representation of a matrix function

(4.15) AP) -—21 [ anr-p " la
wi T
P

where the contour ry encloses all eigenvalues of P . ¢ 1is assumed to be analytic.

If all eigenvalues of P have positive real parts we get ;

(4.16) " P h)--— )’ Y (x.h)(xxk-p)'1dx

where Y. . is defined in (3.4) and e

+ =1
(H+(w:tN.h)(mI -J) 2z )idw

1

(4.17) (H(J'to'tﬂ'h)z’i m

-1 -
(H_(-At MO = 377 27), 4

/
T,
/
T

R R D A T R Rt . A AP
) ¥




where I‘+ < {z @ C|Rez > 0}, I_< {z @ C|Rez < 0} holds. Since

, (4.18) max 1ol - 3971,  maxi(ar - 37”1 < const.

wer+ aer_
holds, the estimates given in Chapter 3 can be used because they were formulated uniformly
for -),w in compact subsets of the left half plane.

By evaluating (4.12) at the boundaries (i = 0 resp 1 = N) we get the block system

F r 0 7
eelv’ @'m| e
0,N-1 -
J £
0 e +
(4.19) 0 -
S(TE[ g ] S(ME | r_ - E_ 3
Y (=3 ,h) 3
0,N~1
- J
-1
8 - BE(H(J,t,t ,NIE )

-1
¥(T) - S(T)E(H(J:to,tu,h)l f)NJ'

We assume that {(2.1), (2.2), (2.3) with A(T) = A has a unique solution for all f's €

r
C({1,#]), B8@R . Therefore (2.15) has to hold which implies that BE 0- is non-

J
e

singular. From (2.30) we conclude that S(T)E[ : ] has a bounded inverse. From (4.16) we

conclude that
T

(4.20) " (3*,h)1 < const. max ¥ {wh)] < const.
0,N-1 0,N-1
wal
+
and
r- -
(4.21) ¥y nq("J /D)1 < const. max IYOINq(-x,h)l .

er_

Mow let 1 be the eigenvalue of J~ which is nearest to the imaginary axis, such that
Re) = -Xmin and take TI_ such that for some small § > 0

(4.22) dist(r_,3) = & and dist(r_, {z € CIRez = 0}) = A, - §

holds. We now choose h = (hi)z-

1 -
-0 such that h1 < h(xmin-G,c,ti) defined in (3.21).

3 e ot M 2
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Then
(A, -8
. (4.23) max ¥, o (=),h)| < const(e + exp(- —%t—"l—- ™)
aer_ T -
holds. Therefore, for ¢ sufficiently small and T sufficiently large, IYO N 1(-J )
¥ s N=

can be made sufficiently small such that the block system (4.19) has a unigue solution
. E_ and

(4.24) max lxil < const (181 + max [(H(J,t
i=0(1)N i=0(1)N

holds where const. is independent of ¢ and T .

S METTE) 1+ 1Ty

0°°N

Now we set y(T) = 0.

The local discretization error ¢t is again defined as

R

1+ "1+ Y,y
x(t, ) - x(t )

a i+1 i a

Bie Va1, T h T2 R X)) T S vhe gy

i
such that the global discretization error

(4.25) i = 0(1)(N-1)
(4.26) e = x(ti) - %y

fulfills the discrete boundary value problem
 141™%1

A _a a - -
(4.27) RT3 i Yot FEL pl 1 L= 0T
' (4.28) Bey = 0
(4.29) S(T)ey = 0 .

From (4.24) we get

(4.30) max Ieil < const. max I(H(J,to,tN,h)l)il ]
i=0(1)N i=0(1)N ;

where £ = (2 has been set.

)N-1
1+ 15 im0
(4.17) and the Lemmas (3.2), (3.3) yield

c a
(4.31) 1(H(J,t_,t ,h)L) I < const. max e, ¢, Mt +sht’ 4 )]
0N t o1y (N-1) T 72 e
for some c > 0 . As in (3.16) we get
2
(4.32) 12,, 1, ¥ < const h [ tx"* 1 + 1x"t )
LA L, a [tyet,,, tgrt ol

t£+ 1/2

assuming that (2.13) holds with F,F',F" @ C([1,=)] n L”([1,~]). Since
Ix(t)h < By(t)d + Ix(t) = y(t)1 < By(t) ) + constIS(T)y(T)1

holds where y is the {(unique) solution of the 'infinite' problem (2.1), (2.2), (2.3) J

! -21-
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with A(T) = A we get
2 (A _,=8)

(4.33) Ix(t)) < const.(( z |F(K) —min L&

1
by 1 * 1Blexp(- ) + as(T)y(TH) .
Lo (1.} )

This follows from (2.14), (2.28). By using the differential equation (4.1) we derive

(x ., =8)
2 2a min atl 2
(4.34) llz+ %; < conat.hl(tl exp( o1 tl ) + TTIS(T)y(T)))
for tl >t = t(1)(xmin-6) which is defined in (3.17). We assume that, given an
€>0, hl < h(xmin-d,e,ti) defined in (3.21). This yields
S+a
(4.35) max 'eil < const. (e+T IS(T)y(T)1) .
i=0(1)N

Using the estimate (2.14) for y(T) gives a bound for the total error

[@) ~-§)
I < const. (e + exp(- —=2B o1y, |

(4.36) max Iy(ti)-x e

1=0(1)N i

Again y solves the 'infinite' problem and x, are the solutions of the Box-scheme for
the 'finite' problem on [1,T]. § 1is sufficiently small.

In order to achieve a total occurance of 08{(t) the choice

(4.37) T = T(g) =
is sufficient.
Let us summarize the results.

We solve (4.4), (4.5), (4.6) with a stepsize sequence hi fulfilling

(4.38) h, </ —= , t <t
t

2 T+t 8
(a ., =6
-a min at1 -
(4.39) h, < /e t, exp ( o ty et >t

1
on the interval [1, (73311:37 in %]°+1 ] and get the error estimate
min

(4.40) maxly(t.) - x, 0 = 0{(g) , € +»0 .
N i i

-22=-

[




The number of necessary steps N(¢) when equality holds in (4.38), (4.39) is given by

(3.23), (3.24)

(4.41) N(e) "¢ L , e+ 0
€
which is comparable with the number of steps a constant stepsize algorithm would need for

the integration of a constant interval problem in order to achieve an 0(¢) accuracy.

Of course the second term in the error estimate (4.36) can be reduced by adding

1

1 1 1

(Ac+ o E)a+
min

(second and third branch of h ). An estimate for the number of gridpoints in the case

gridpoints tz > ( and by forming stepsizes hl according to (3.21)(b)

h o= E(Amin-G,:,tl) is given by (3.30).




5. The General Linear Case.

The ‘'infinite' problem (2.1), (2.2), (2.3) shall be approximated by the finite problem
(2.23), (2.24), (2.25). The asymptotic boundary condition S(T) shall fulfill the
regularity conditions (2.29), (2.30).

The Box-scheme for the approximating problem is

x -X

it1 4 4, Lo - -
(5.1) __——hi /2ti+1/2h(ti+ 1/2)(xi+'1+xi) + ti+ 1/2f1+ 1/2, 1 0{1)(N-1)
(5.2) on =8
(5.3} S(T)xN = y(T) .

For the n xn matrix A €@ C([(1,»]) is assumed to hold and A(=) = lim A(t) has the
t 0
Jordan for J obtained by

(5.4) A(w) = EIE '

and J has the block structure (2.5). Again we set

(5.5) xi - E“i
and define
(5.6) G(t) =E"TA(L)E-J ; G(t) »0 ¢t +=.

Again we want to derive an existence and stability theorem, but now we use a perturbation
approach and a contraction argument.

We rewrite (5.1), (5.2), (5.3)

u -4
i1 i _J & 1+ & a -1
(5.7 n, 2 ia Yy (Bgaq®y) $ 28,0, OE 1 MU gbu) H e B L,
i = 0(1)(N=-1)
(5.8) BEu, = 8
(5.9) S(T)Ewg = Y(T) .

According to Chapter 4 the general solution of (5.7) can be written as

r
+

Yy, N-1
+ r - -
(5.10) 0 Y “(-3",ne’

@ ,n 0

-

~ -1
+ (HOI,E,5,R0G0), + (T, , b NET £),

-24-
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& - Ga = ((& N-1
(5.11) (Gl g, 1, = Y2 Gle g 9 Yy rag), Gum (@) gy, Vo0

r r
has been set. E’ ec + and {_€C hold.

From (4.17) and the lemmas 3.2 and 3,3 we get
max I(H(J,tI,tN,h)Eu)ll <

L=I(1)N

(5.12)
c a
€ const. Gl max (M+<h,t) ¢, ) max fu,f .
trety garnyw-n 2 A2 gayyn *
S
ot 1ya+1 -
We choose T =t = (“mm"” tn <) and hy < h(), -6,e,t,) defined in (3.21).
xmin > 0 is again the modulus of the real part of that eigenvalue of A(w) which is

closest to the imaginary axis of all eigenvalues of A(=) with negative real part and
§> 0 is sufficiently small,

Since E(A,,e, ) > E(X1,e,tl) we derive from (3.21) that E(Xmin - 8,6t )

t£+1 N=-1
c

<1 ®such that 1 + Sh t% 4 ¢ const holds. We define the operator
2 LA

> (N-1) (N=-I+1)
(5.13) Hih, £ t) & C +c°
n(N-I) N-1

such that for x € X (xl+tﬁ )2_1

(H(J,tl.tu,h)x)I
(5.14) H(h,tp,t )% =

(H(J,tl,tw,h)x)N
holds. From ‘5.12) we get
(5.15) IH(h,tI.tN)GI < const. lGl[t St

I"'N
where 11 denotes the max-norm for vectors in the respective cj resp. the associated

matrix norm. Therefore the operator
~ ~ -T4+ -
(5.16) A R

is invertible for t; < ty sufficiently large. We define

-25=




s i

r r — = 0 -t~
AR 4% r .
! Y (-3 ,h)e
. + 0 - - 0,1-1
(5.17)  (a) ¥; \(3Th) = X Sy eaTm =L . i
r =
+ + -
vt gt 0 7
N,N-1 t_ . J-
0 Y.~ (-3 ,h)e
such that g A L_O'N ! 3.
Yy
I+1
: - (z-Hh .t Y (0T ne + (z-A(ht_,t 08 YD (-37,h0E +
(h, I'tN 1N ] E+ (h, 1 “) 1N =-J E_
-1
u“

1 1

+ (I—H(h,tl,tu)é3' HE £

holds. In order to obtain uo,u1,---,u1_1 the difference equation (5.7) has to be solved
backwards with given uy .

hy

—— a —1
Therefore ho, ,hI_1 have to be chosen such that (I 3 t1+-9§A(t£+ %g) exist
for 2 = 0(1)(I-1). From this and (5.18) we get
+ -
(5.19) u =2, £+ ZE + z, (£) , 1 = 0(NN
where zz is a n x r, . z; isa n xr_ matrix and zi(f) e cn .
The block system
BEZ BEZ, B - BEZ_(f)
0 0 €, 0
(5.20) . S g )
S(T)!:zN S('I')EzN - y(T) - S(T)Ezu(f)

results by evaluating at the boundaries i = 0 resp 1 = N and by using (5.8), (5.9). We

set
+ -
zI zI
(5.21) (a) z¥ = | by zo . =] s
: S B . ¢ I,N : .
+ -
zN ZN
Prom (5.18) we get
o
+ - ~1 + +
(5.22) zI’N- o (H(h,tI,tN)G) YI’N(J +h)

and since lH(h,tI,tN)l < const as ¢ + 0

-26~
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Rl

O S,

+ +
12 - YI,N(J hli

1N
r T
(3.23) Y@t m et @t

< const. max 16l y, ‘ + ’ P <

2=I(1) (N=1) 2 0 0
-c(T=-t_ )

< const. max (lG(t“v )le el ).

L=I(1)(N=1) 2

This follows from (4.12) and Lemma 3.4. It is easy to check that the right hand side of
(5.23) converges to zexro as T + » (¢ + 0)., Therefore
(5.24) zg=[g]+otnh, eso0
follows and
s(m)Ez, = s(T)E[ s ]+ om

is nonsingqular for ¢ sufficiently small because of (2.30) and the matrix in the (1.1)

position of (5.20) is bounded as ¢ + 0 .
We conclude from (5.18)
(2.25) zI'N - H(h,tI,tN)GZI'N + YI.N(-J /h) .
In Chapter 2, (2.16) it was noted that the general solution of the homogenous problem
u'= £%J+G(t))u
uec(l,«)
can be written as
-1 0
(5.26) v_(t) = ((X - HG) () 1 Dy t >y
r

where the solution operator H is defined in (2.11) and ¢(t) is ae in (2.9). We get

(5.27) (o = mey e s a2 1, ey
r
and define the vector "'I,N for y = tI
(t.) (HGY ) (t_) (e | °
W_ 1 w‘ I ¢ 1 I!
(5.28) w; . - . + .
‘ 0
v_(ty) (HGY_) () 8t [Ir]
\—-W——_J W:—‘J

(HGV¥_ )y, 5 1N

.27~

i

a3 =t




e e

Subtracting from (5.25) we get

I,N

(5.29) zI,N - WI,N - H(h'tI'tN)GzI,N - (I'IGW_.)I’N +Y (-3 ,h) - ol,N

and

(5.30) Zrn " VN " Hih, e, )62y o - ¥y ) = [UHGY )y o - H(h,tp,t )G, ]

+ YI,N(-J /h) - °I,N
follows. This gives

PS - =1 - -
= (1 - H(h,t,£)8) 7 (Y] ((=37,h) -

Zyn T YN ) -

$,n
(5.31)

-~ A | ~ ~ -
g b - (I - H(h:tlltu)s) ((HGW‘)I;“ - H(h'tl'tN)GwI,N)'

From Chapter 4 we conclude that

(5.32) IYI,N

(=37/h) = ¢ (I =0(e), €20

and since (HGY )(t) is the solution of the problem
vt = t%e + %)y (t)

0

I
R

'v(tI) =0

v e C([t1,°])
we get assuming that A € C(({1,=]); A', A" @ C([1,=)) A L _([1,=])

(5.33) I(Hl:m:_)r’N - H(h,tI,tN)G¢I,N 1 =0(¢g) , e~+0
and therefore

(5.34) ] I = 0(e) , €+0

z;,u - W;,N
follows. By continuation (5.33) holds with I = 0 .

We now assume that the 'infinite' problem (2.1), (2.2), (2.3) is uniquely soluble for
every g€ nt', f e c([1,#]) such that (2.18) holds. Then the matrix in the (1.2)
position of (5.20) is nonsingular for e sufficiently small and its inverse if bounded as

€ +0 . The matrix in the (2.2) position is bounded and therefore the block system (5.20)
is uniquely soluble for ¢ sufficiently small and we get the stability estimate

(5.35) max fx 1 < const(IgY + Mf1 + 1y(m .
1=0(1)N i 0,7

-28=-




By Proceeding as in Chapter 4 we get

Theorem 5.1, Assume that A @ C{[1,®)); A', A" € C([1,%)})) n L ([1,=]) and that f

fulfills (2.13) with P, P', P* @ C{{1,%)) n L.([1,-]). Let for some ¢ sufficiently

small 1
? -3 I RY~
; (5.36 ) Te) =t = (oo )
: min
: hold with some fixed small § and assume that

(5.37) h, < ro/c for L <Y, Sy 2 0

(., =8) y
-a min ot
{5.38) h < e t,exp(——3 t ), Y <ty < T(e)

hold for some fixed y sufficiently large. Then if the matrix (2.18) is nonsingular the
Box~-scheme (5.1), (5.2), (5.3) is uniquely soluble for ¢ sufficiently small and

{5.39) max Ix1 - y(ci)l = 0(¢)
i=0(1)N
holds for «(T) =z 0 .

If equality holds in (5.37), (5.38) the number of steps N = N{e) fulfills

(5.40) N(e) ~ ¢, 2, eas0.
/e

The condition number of a nonsingular A is defined by

(5.41) x(3) = A~ ]

Then the condition number of the difference operator Ly (given by (5.4), (5.5), (5.6)

fulfills the estimate

(5.42) x(Lh) < const L const. N(eg)
€
if equality holds in (5.37), (5.38).

This holds since ILhI < const. 2 and because of the stability estimate (5.35).
/e
(5.42) is a very moderate condition number and therefore (5.4), (5.5), (5.6) can be

safely solved (by partial pivoting using SOLVEBLOCK(de Boor and Weiss (1980)).
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6. Nonlinear Problems.

We consider the ‘infinite' problem

(6.1) y' = t%(t,y), 1¢t<m, a0
(6.2) b(y(1)) = @
{(6.3) Yy € C([1,%])
and the Box-scheme
xi+‘l-xi o 1
(6.4) —-ﬁi—— -t 1/2 f(t“ 1/2, /2 (xi+1"xi)) ’ 1 =0(1)(N=-1)
(6.5) b(x,) = 0
(6.6) S(T)xy = S(T)y'(-)

where T = ty holds. The asymptotic boundary condition S(T) is considered with regard
to Chapter 2.
As mentioned in Chapter 2
(6.7) f(o,y(®)) =0
has to hold. We now assume that there is an isolated zero y.(w) and that fy(w,y'(n))

has the Jordan form J obtained by

* -
(6.8) £ (=y (=) = EJE !
where J fulfills (2.5). Moreover we assume
. b ot
(6.9) £ acc 1,y (=) £ty (=) = 0(e ! Yo u> A
rx ’ ’ mln
(6.10) b: B s R ™ 3 b,by are locally Lipschitz continuous in R’

and that the problem (6.1), (6.2), (6.3) has an isolated solution y'(t) > y.(o) as
t + o . The isolatedness means that the linearized problem
z' = fy(t,y'(t))z i
b,y (1)z(1) = 0

z @ c([1,) )

has only the trivial solution 2z = 0. Then we conclude from de Hoog and Weiss (1980a) that

the approximating problem

i b bt . i,

(6.11) x* = (e, x)
(6.12) b(x(1)) = 0
*
(6.13) S(T)x(T) = S(T)y ()
-30-




with (2.29), (2.30) are locally (around y'(t)) uniquely soluble for T sufficiently large
and

(6.14) Ix < const. IS(T)(y(T) - y'(-))l

RRAITI 5
-«
holus. An estimate for S(T)(y(T) -y (w=)) can be obtained from (2.21). Possible choices

for S(T) are discussed in lLentini and Keller (1980).

] 1
Now we choose t =T = { gt n l)“+1 for ¢ sufficiently small and apply the
i (xmin-ﬁ) €
nonlinear stability theory given in Keller (1975) with ¢ as a paramster. The result then
A
follows from the stability estimate (5.35) for linear problems and we merely state it in
‘ Theorem 6.1. Under the given assumption the Box-scheme is convergent for ¢ + 0 to the
i
locally unique solution of (6.4), (6.5), (6.6) if stepsize sequence hl fulfilling
{ i -
l ) (6.15) h" < cole oot <Y
(Nni -8)
-a n o+t
(6.16) h, < v t, exp =1 t, ) Y<t, <Tle)
is chosen. The estimate
(6.17) max ly(ti) - xil = 0(¢) , €+0

i=0(1)N
holds. The Newton procedure for (6.4), (6.5), (6.6) is quadratically convergent for

starting values in a sphere

yie)
+ .
k=txed™N | I [1cn
Yt
where £ is independent of ¢ .
-31=
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7. Algorithm 1

A difficulty that might arise is that T(¢) = (73—211:—37 n % )"+1 is rather small
min
for reasonable ¢'s (10-4 < e < 10-8). For example assume o= 1, A, ~2, €= 10 8.

Then T =~ 4.

If y(t) has not ‘'reached' its asymptotic state at T ~ 4 no good approximation by
the finite interval problem posed on [1,4] can be expected. However a significant increase
of T (such that y(T) 1is reasonably close to y(®«)) which corresponds to an enourmous
decrease of ¢ would imply a large increase'in the amount of labor since N(g) =

= 0(5-1/2 |

A reasonable way to overcome this difficulty is to set

1
atl K Yot
(7.1 T(e) = (-—————:——— tn = )
(Amin §) €

where

xmin -6 ot 1
(7.2) k= max |{y(t) - y(b))exp(——;:T——- t )l

te(1,«]
has been set.
Then

(7.3) 1y(T(e)) - y(=)1 < € for all ¢ > 0 .

The meshsize sequence (6.15), (6.16) can still be used on the whole interval [1,T(g)].
The error estimate (6.17) takes the form
(7.4) max lxi - y(ti)l = 0(«ke), € +0
1=0(1)N
- y
and N(e) would still be an O0(e ‘2).
In the case that the function f , which sets up the differential equation, is
independent of t , the choice
(7.5) S(T) =S = [1_ ,0]E "
.

(and Y(T) = y = Sy(=)) implies

(7.6) ix - < const 1y(T) - v(ﬂ)l2

,m
(see Lentini and Keller (1980)). Therefore we can choose




T

1

X ya+!
)

(7.7) re) =Y (2 tn

min

and (7.4) still holds.

A way to construct an adaptive code based on the given theory is the following.

At first choose a T so large that y(T) is reasonably close to y{(w). This might be
done by using physical information on the solution of the infinite problem. Then choose a
coarse grid on [1,T] such that the meshsizes increase exponentially as ¢t + T . The
solution of the equations (6.4), (6.5), (6.6) gives an initial quess (xo,---,xN). Now we
calculate .

A -§

(7.8) k= max |(x, - y(=))exp( “t:1 t:+1)| .

1=0(1)N
Here § should be an input parameter. Then we set <y = tI (for the meaning of y see

Theorem 6.1) such that

1 lx, = y(=)] > for some 3j < I

Xix?

(7.9) max lxl - yl=)| <
A=I(1)N

where M is also an input parameter.

3

x IR

For i = 1(1)(I-1) we calculate the first order term of the local error li using
the x;'s as Lentini and Pereyra (1977) did. On [1,tI] we define an equidistributing
mesh proceeding as in the just cited reference given an ¢ > 0 . On [tI, f(e)l where

T(e) dis given by (7.1) resp. (7.7) with ¥ set for «x , we choose the meshsizes hi as

A, -6
2in N, = (1) N-2)

t

- =a
h /e t exp( e N

i L
hN-i = T(e) - tu_1

and solve (6.4), (6.5), (6.6) on (1,3(:)] using the constructed mesh.

A standard error estimation algorithm then checks whether a given accuracy has been
achieved. 1If yes then the algorithm stops, if not we calculate ;;Ew' YnEW from the just
obtained solutions of the Box-scheme and calculate a new grid with ENEW = ¢g/2 separately

on B ?(CN )1 as in the first iteration.

[1'YNEw]l [Ym W
This interative procedure stops as soon as the required accuracy is obtained.
Numerical experiments will be reported in a subsequent paper solely concerned with

computational aspects of 'infinite' boundary value problems.
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